Scalable digital hardware for a trapped ion quantum computer

TitleScalable digital hardware for a trapped ion quantum computer
Publication TypeJournal Article
Year of Publication2016
AuthorsE Mount, D Gaultney, G Vrijsen, M Adams, SY Baek, K Hudek, L Isabella, S Crain, A van Rynbach, P Maunz, and J Kim
JournalQuantum Information Processing
Volume15
Issue12
Start Page5281
Pagination5281 - 5298
Date Published12/2016
Abstract

© 2015, Springer Science+Business Media New York. Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.

DOI10.1007/s11128-015-1120-z
Short TitleQuantum Information Processing