Determination of Multimode Motional Quantum States in a Trapped Ion System.


Trapped atomic ions are a versatile platform for studying interactions between spins and bosons by coupling the internal states of the ions to their motion. Measurement of complex motional states with multiple modes is challenging, because all motional state populations can only be measured indirectly through the spin state of ions. Here we present a general method to determine the Fock state distributions and to reconstruct the density matrix of an arbitrary multimode motional state. We experimentally verify the method using different entangled states of multiple radial modes in a five-ion chain. This method can be extended to any system with Jaynes-Cummings-type interactions.