Past Projects

Integrated Optics for Ion Trap Quantum Information Processing

Trapped ions provide an ideal physical system to realize qubits. Well-defined qubits with long coherence times have been demonstrated, along with an efficient way to initialize and measure qubit states. Several schemes for realizing universal set of logic gates have also been proposed and demonstrated. These demonstrations provide a solid platform for constructing a scalable quantum information processor (QIP). More details

MEMS Technology for Quantum Information Processing in Atomic Arrays

Trapped atomic ions and neutral atoms provide exciting possibilities for realizing scalable quantum information processors (QIPs). The qubit is represented by a pair of internal states of these atoms, and most of the qubit manipulation is performed by using laser beams. In a traditional experiment, the laser beams are aligned to the atomic systems using conventional optics holders on an optical table. Flexible beam shifting capabilities are needed to individually address a large number of these atomic qubits in an array. Traditionally, acousto-optic and electro-optic deflectors are used to provide this capability. In our research we utilize micro-electromechanical (MEMS) technology to provide highly flexible, multiplexed beam steering capability over a wide range of optical wavelengths. More details